Through extensive experiments using synthetic and real world data, we show that SCPD (a) achieves state-of-the-art performance, (b) is significantly faster than the state-of-the-art methods and can easily process millions of edges in a few CPU minutes, (c) can effectively tackle a large quantity of node attributes, additions or deletions and (d) discovers interesting events in large real world graphs.
Huang, S., Danovitch, J., Rabusseau, G., Rabbany, R. (2023). Fast and Attributed Change Detection on Dynamic Graphs with Density of States. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_2
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_2